search

UMD    AML





A model of an autonomous jumping robot, with a penny for scale. Photo by Sarah Bergbreiter.

A model of an autonomous jumping robot, with a penny for scale. Photo by Sarah Bergbreiter.

 

Assistant Professor Sarah Bergbreiter (ME/ISR) has received a 2008 Young Faculty Award from the Defense Advanced Research Projects Agency (DARPA). The award, now in its second year, is given annually to "39 rising stars in university microsystems research." The $150,000 award is designed to seek out ideas from non-tenured faculty to identify the next generation of researchers working in microsystems technology. The funded researchers focus on concepts that are innovative, speculative, and high-risk.

Bergbreiter's research is titled, "Silicon/Elastomer Components for Autonomous Jumping Microrobots."

The research will develop the mechanisms necessary to build a robust autonomous jumping microrobot. Jumping offers numerous benefits to millimeter-sized robots. As the robot size shrinks, obstacles around the robot grow comparatively larger and jumping provides a relatively simple mechanical means of dealing with those obstacles. Ultra low power parasitic locomotion, in which the microrobot uses other objects moving nearby to provide the locomotion power, becomes feasible when the microrobot can jump on and jump off.

For basic functionality, a jumping microrobot benefits from its relative simplicity. It requires only a motor, an energy storage element to store and quickly release mechanical energy for a jump, a controller, and a power supply. However, while the robot itself is fairly simple, the components have performance requirements above those offered by current technologies.

To achieve the performance and robustness necessary to make this vision feasible, microrobot mechanisms such as motors and springs will be fabricated in a silicon/elastomer process. Specifically, this process will add an elastomer like PDMS into a standard SOI MEMS process to improve motor force density and spring performance to the point at which the robot will be able to store and release enough energy to jump 10s of centimeters. The silicon/elastomer process will also add robustness so that the robot will be able to land and jump again.

April 1, 2008


«Previous Story  

 

 

Current Headlines

Bio-Nose Technology: Conferring a Sense of Smell

Ashwani Gupta Named Royal Academy of Engineering Fellow

Maryland Engineering Ranks Among the Nation’s Top 20 Undergraduate Engineering Programs

UMD’s Gabriel Models Liberalized Energy Markets in Brazil

Graham Appointed to Navy Science and Technology Board

Yu Named Elkins Professor

Miao Yu to develop cost-effective sensor for measuring lake health

Dutt is PI on NSF-Funded Quantum Research Grant

Miao Yu receives NSF funding to develop ice-measuring sensors

Miao Yu selected as Wilson H. Elkins Professor

 
 
Back to top  
AML Home Clark School Home UMD Home ENME Home