search

UMD    AML





PHOTO 1 (ABOVE): Team members on the European Space Agency A300 aircraft in April 2010. From left to right:  Jungho Kim, Paolo DiMarco (professor, University of Pisa), Rishi Raj (graduate student), and Serguei Dessiatoun (research professor, U-Md.). (For the hi-res version, click here.) PHOTO 2: Rishi Raj (graduate student, center), Martin Karch (exchange student, left) and Jungho Kim (right) in the low-g environment on the European Space Agency A300 aircraft in March 2008. (For the hi-res version, click here.)

PHOTO 1 (ABOVE): Team members on the European Space Agency A300 aircraft in April 2010. From left to right: Jungho Kim, Paolo DiMarco (professor, University of Pisa), Rishi Raj (graduate student), and Serguei Dessiatoun (research professor, U-Md.). (For the hi-res version, click here.)

PHOTO 2: Rishi Raj (graduate student, center), Martin Karch (exchange student, left) and Jungho Kim (right) in the low-g environment on the European Space Agency A300 aircraft in March 2008. (For the hi-res version, click here.)

 

View the related press release here.

Here on Earth, the process of boiling is used for tasks ranging from cooking and heating to power generation. In space exploration, boiling may also be used for power generation and other applications, but because boiling works differently in a zero-gravity environment, it is difficult to design hardware that will not overheat or cause other problems.

Professor Jungho Kim of the A. James Clark School's Department of Mechanical Engineering at the University of Maryland, College Park, is working with John McQuillen, project scientist at NASA's Glenn Research Center in Ohio, to study how boiling is altered in zero-gravity. Their experiment, the Microheater Array Boiling Experiment (MABE), will launch on the Shuttle Discovery on February 24 and be placed aboard the International Space Station for operation in the following few months. The experiment, which has already been tested on NASA's "Vomit Comet" and the European Space Agency's Parabolic Flight Campaign in France, will be installed in the Microgravity Science Glovebox once aboard the ISS.

The results of the experiment could help engineers design space hardware that utilizes boiling for multiple applications.


This video shows how the boiling experiment was conducted on the "Vomit Comet."

"In space, boiling may be required to generate vapor to power turbines in some advanced concepts for power generation, for temperature control aboard spacecraft, and for water purification," says Kim.

When a liquid is boiled on Earth, vapor, which is less dense than liquid, is removed from heated surfaces through the action of buoyancy. In zero-gravity, the buoyancy force becomes negligible and vapor can blanket the heated surfaces rather than moving away, potentially leading the surfaces to a state known as critical heat flux.

Critical heat flux occurs when a heater or plate becomes too hot, restricting the flow of liquid to the surface and causing the plate to overheat and potentially burn out. Since liquids boil differently in space, an understanding of how these fluids behave can improve the reliability and expand the applications of space exploration hardware.

The experiment that will take place on the ISS will use two arrays of platinum microheaters bonded to a quartz plate. The arrays measure 7 mm and 2.7 mm across. The heaters are warmed when electricity is applied, and spaces between the heaters lines will allow the boiling process to be visualized through the transparent quartz. Boiling of a refrigerant-like fluid (FC-72) will be filmed at high speed and the video sent back to Earth along with the heater data in real-time for analysis.


This video shows how boiling changes as the gravity level goes from low-g (start of movie) to high-g (end of movie). The heaters are colored according to the heat flux with blue representing low heat transfer and red representing high heat transfer.

"We have calibrated these heaters as a function of a temperature, and we measure the power level required to keep each of the heaters in the array at a constant temperature" Kim states. "Using a camera that looks through these microheaters, we can examine the relationship between the power level and the state of the fluid above that microheater."

Back here on Earth, Kim has both graduate and undergraduate students helping him with his research.

For more information, please contact Missy Corley at 301-405-6501 or mcorley@umd.edu.

 

More Information:


MABE: http://issresearchproject.grc.nasa.gov/MSG/BXF/
Professor Jungho Kim: http://www.enme.umd.edu/facstaff/fac-profiles/kimjungho.html
Video about zero-G flight




Related Articles:
NASA's Douglas-Bradshaw a Role Model for STEM Students
Gabriel spending academic year in two visiting professorships
Gabriel, Brubaker developing game theory water market models for river users
Building Energy Innovation in Maryland
Gabriel and colleagues contribute chapter to new Springer book on liberalized power markets
New model can help decisionmakers planning to retrofit buildings for energy efficiency
UMD receives two new DOE Building Technologies awards
The App that Fights Congestion, Emissions
Maryland Energy Innovation Institute partners with Daegu Gyeongbuk Institute of Science & Technology
Inaugural Energy Innovation Seed Grants awarded

February 24, 2011


«Previous Story  

 

 

Current Headlines

Mack Receives 2024 MCAA Distinguished Service Award

CEEE Researcher Named Finalist in UMD’s 3MT Competition

Agents of Positive Change: Highlighting Women Maryland Engineers

Balachandran, Cameron, Yu Receive 2024 MURI Award

A Special Ceremony Honoring Bala Balachandran

Alumni Spotlight: José Cyrano Ruiz Cabarrús

3D and Beyond: UMD Researchers Explore Synthetic Dimensions

Celebrating Black Engineers: Philip Lovell

Fitzgerald Walker Honored By MCAMW

Clark School's Online Master of Engineering Soars to No. 6 National Rank

 
 
Back to top  
AML Home Clark School Home UMD Home ENME Home